

Taleon Terra Furnierschichtholz

ANWENDUNGSBEREICHE

Balken, Sparren, Stützen, Pfetten, Rähm, Fenster- und Türstürze, Hauptträger, Unterzüge, Deckenverstärkungen etc.

Vielfältige Industrieanwendungen.

Systemkomponente im Bausystem **STEICO**construction.

- Furnierschichtholz für vielfältige Anwendungsbereiche
- In großen Materialstärken und vielen Formaten verfügbar
- Besonders hohe Festigkeit
- Ausgezeichnete Dimensionsstabilität
- Gute Schraubenauszugsfestigkeit
- Schlanke Querschnitte, geringes Gewicht
- Vermeidung von Setzungen
- Hohe Anschlusskräfte bei Verwendung von Holzverbindern
- Besonders effiziente Nutzung des Rohstoffs Holz

Weitere Informationen finden Sie unter www.steico.com

STEICOultralam™: Furnierschichtholz für höchste Anforderungen

STEICOultralam™ besteht aus mehreren Lagen ca. 3 mm starker, miteinander verklebter Kiefer- und Fichtenfurniere. Fehlstellen werden dabei reduziert bzw. ein annähernd homogener Querschnitt produziert. Dieser Aufbau verleiht STEICOultralam™ höchste Festigkeiten.

Gleichzeitig wird die Schwind- und Quellverformung vermindert. Zusätzlich erlaubt dieses Verfahren die Herstellung einer großen Formatvielfalt durch die Produktion eines plattenförmigen Rohlings von bis zu 20,50 m* Länge und 1,25 m Breite.

Zertifizierte Qualität

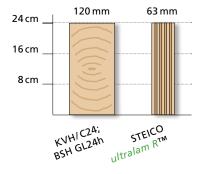
STEICOultralam R™ (längsorientiert verklebte Furnierlagen) und STEICOultralam X™ (mit kreuzweise verklebten Furnierlagen) sind gemäß DIN EN 14374 CE-zertifiziert und verfügen über eine allgemeine bauaufsichtliche Zulassung nach Z-9.1-811.

^{*}Transportmöglichkeiten für Längen > 13,50 m nach Absprache

UNBEGRENZTE ANWENDUNGSMÖGLICHKEITEN

Vorfertigung von Wandelementen mit STEICOultralam R™ und STEICOwall.

STEICOultralam R™ als besonders tragfähiges Deckenbauteil.

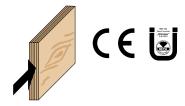


Vorfertigung von Holhlkasten-Deckenelementen.

Ob als Balken, Sparren, Stützen, Schwellen, aussteifende Dachplatten oder für Industrieanwendungen: STEICOultralam™ überzeugt durch seine vielseitige Verwendbarkeit.

Dank seiner hohen Festigkeit lassen sich so besonders belastbare und gleichzeitig schlanke Konstruktionen erstellen, die architektonischen Anspruch mit dauerhafter Sicherheit verbinden.

Querschnitte mit gleicher Biegefestigkeit



STEICOultralam™ IST EINER DER STABILSTEN HOLZWERKSTOFFE ÜBERHAUPT

Die aktuellen Prüfwerte bestätigen die hohe Qualität von STEICOultralam™. Die charakteristische Biegefestigkeit liegt z.B. bei STEICO $ultralam\ R^{\intercal M}$ hochkant bei 44 N/mm² und flachkant bei 45 N/mm². Damit ist die Biegefestigkeit deutlich höher als bei normalen BSH. Die charakteristische Druckfestigkeit liegt bei beeindruckenden 48 N/mm² und das Elastizitätsmodul weist in Faserrichtung einen Mittelwert von 14.000 N/mm² auf. Das heißt: schlankere Bauteile, weniger Material und geringere Kosten.

Taleon Terra Furnierschichtholz

Leistungsfähiger Holzwerkstoff für stabförmige Bauteile. Bei den stabförmigen STEICOultralam R™ Bauteilen sind alle Furnierlagen längsorientiert verklebt.

CE-Zertifiziert. Allgemeine bauaufsichtliche Zulassung erteilt.

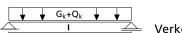
EICOultralam[™]X

Bei STEICOultralam X™ Bauteilen sind ca. ein Fünftel der Furnierlagen kreuzweise verklebt - was die Tragfähigkeit beim Einsatz als Platte sowie die Formstabilität und Steifigkeit wesentlich erhöht.

CE-Zertifiziert. Allgemeine bauaufsichtliche Zulassung erteilt.

STEICOultralam R™

ANWENDUNGSBEREICHE


- Balken
- Sparren
- · Primärträger wie Pfetten, Unterzüge
- Stützen
- Schwelle und Rähm
- Balkenverstärkungen
- Industrieanwendungen wie Fenster-, Tür- und Leiterfertigung, Gerüstbohlen etc.

CHARAKTERISTISCHE RECHENWERTE FÜR STEICOultralam R™ gemäß Z-9.1-811 in N/mm² für Bemessungen nach DIN 1052

Die char. Rohdichte beträgt 495 kg/m³. Die Randbedingungen	Platten- beanspruchung	Scheiben- beanspruchung
gemäß Z-9.1-811 sind zu beachten.	The same of the sa	4
Biegung II zur Faser f _{m,0,k}	45,0	44,0
Zug II zur Faser f _{t,0,k}	37,0	37,0
Zug ⊥ zur Faser f _{t,90,k}	-	0,9
Druck II zur Faser f _{c,0,k}	48,0	48,0
Druck ⊥ zur Faser f _{c,90,k}	3,8	7,5
Schub f _{v,k}	3,2	4,6
Elastizitätsmodul E _{0,mean}	14.000	14.000
Schubmodul G _{mean}	500	500

MAXIMALE STÜTZWEITEN IN METER [M] FÜR EINFELDTRÄGER BEI DER VERWENDUNG VON STEICOultralam R™

Schwingungen nicht berücksichtigt

Verkehrslast Q_k=2,0 kN/m²

Dicke [mm]	Höhe H		G _k =1,2 kN/m² Trägerabstand in [cm]			G _k =1,8 kN/m² Trägerabstand in [cm]			G _k =2,5 kN/m² Achsmaß Träger [cm]		
[IIIII]	[mm]	50,0	62,5	100,0	50	62,5	100,0	50	62,5	100,0	
	200	4,71	4,38	3,74	4,38	4,07	3,46	4,38	3,73	3,19	
	240	5,66	5,25	4,49	5,26	4,88	4,15	5,26	4,48	3,83	
STEICOultralam R 45	300	7,07	6,56	5,61	6,57	6,10	5,19	6,57	5,60	4,79	
	360	8,48	7,88	6,66	7,88	7,32	6,14	7,88	6,72	5,67	
	400	9,43	8,75	7,34	8,76	8,13	6,77	8,76	7,47	6,25	
	200	5,10	4,73	4,05	4,74	4,40	3,76	4,74	4,04	3,45	
	240	6,12	5,68	4,86	5,69	5,28	4,51	5,69	4,85	4,14	
STEICOultralam R 57	300	7,65	7,10	6,07	7,11	6,60	5,64	7,11	6,06	5,18	
	360	9,18	8,52	7,29	8,53	7,92	6,77	8,53	7,27	6,22	
	400	10,20	9,47	8,10	9,48	8,80	7,52	9,48	8,08	6,91	
	200	5,59	5,19	4,44	5,19	4,82	4,12	5,19	4,43	3,78	
	240	6,71	6,23	5,32	6,23	5,78	4,95	6,23	5,31	4,54	
STEICOultralam R 75	300	8,38	7,78	6,65	7,79	7,23	6,18	7,79	6,64	5,68	
	360	10,06	9,34	7,98	9,35	8,68	7,42	9,35	7,97	6,81	
	400	11,18	10,38	8,87	10,38	9,64	8,24	10,38	8,85	7,57	

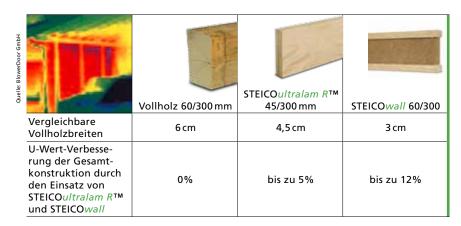
Randbedingungen / Anmerkungen

Exposition: NKL = 1; Kat. der Nutzlast = A KLED = mittel

Nachweis im Grenzzustand der Gebrauchstauglichkeit

Dieser Nachweis wird gemäß den Empfehlungen von Absatz 9.2 der DIN 1052:2008 geführt. Durchbiegungen in der charakteristischen (seltenen) Bemessungssituation:

 $W_{Q,inst} \leq I/.....300$ w_{fin} - $w_{G,inst} \le 1/....200$ Durchbiegung in der quasi-ständigen Bemessungssituation: $W_{fin} - W_0 \le I/.....200$


Es kann vorkommen, dass die o.g.

Grenzwerte als zu großzügig angesehen werden. In diesen Fällen wird empfohlen, spezielle Vereinbarungen mit der Bauherrenschaft im Vorfeld zu treffen.

Nachweis im Grenzzustand der Tragsicherheit

Berücksichtigt sind die Nachweise für einachsige Biegung und für Schub nach DIN 1052:2008. Die Auflagerpressung, Wind- und Punktlasten sind in den Tabellenwerten nicht mit berücksichtigt. Die Tabelle und deren Inhalt ersetzten keinesfalls den statischen Nachweis.

WÄRMEBRÜCKEN OPTIMIEREN DURCH DEN EINSATZ VON STEICOultralam R™ bzw. STEICOwall

WEITERE EIGENSCHAFTEN FÜR **STEICO**ultralam R™

Emissionsklasse für Formaldehyd:

Klasse für das Brandverhalten: D-s1,d0

Bemessungswert der Wärmeleitfähigkeit λ: 0,13 W/(m*K)

WIRTSCHAFTLICHER ERSATZ VON BRETTSCHICHTHOLZ MIT STEICOultralam R™

Standardhöhen

Brettschichtholz GL24 Breite * Höhe [mm]	STEICOultralam R Breite * Höhe [mm]						
100/200	45/300	57/240	75/220	2*45/200	2*75/200		
100/240	45/300	57/300	75/300	2*45/240	2*75/200		
100/280	45/360	57/360	75/300	2*45/300	2*75/240		
100/320	45/400	57/360	75/360	2*45/360	2*75/300		
120/200	45/300	57/240	75/220	2*45/220	2*75/200		
120/240	45/360	57/300	75/300	2*45/300	2*75/220		
120/280	45/400	57/360	75/360	2*45/300	2*75/300		
120/320	45/450	57/400	75/360	2*45/360	2*75/300		
160/240	45/360	57/360	75/300	2*45/300	2*75/240		
160/280	45/400	57/400	75/360	2*45/360	2*75/300		
160/320	45/500	57/450	75/400	2*45/400	2*75/360		
160/360	45/550	57/500	75/450	2*45/450	2*75/360		
160/400	45/600	57/550	75/500	2*45/500	2*75/400		
200/240	45/400	57/360	75/360	2*45/300	2*75/300		
200/280	45/450	57/400	75/400	2*45/360	2*75/300		
200/320	45/550	57/500	75/450	2*45/400	2*75/360		
200/360	45/600	57/550	75/500	2*45/450	2*75/400		
200/400	_	57/600	75/550	2*45/500	2*75/450		

Randbedingungen / Anmerkungen

Der Vergleich basiert ausschließlich auf der Biegefestigkeit und Biegesteifigkeit der Querschnitte bei Hochkantbeanspruchung und ersetzt nicht die statischen Nachweise im Grenzzustand der Gebrauchstauglichkeit und Tragsicherheit. Ein detaillierter Nachweis kann für STEICOultralam R™ mit den Computerprogrammen "DLT und HO7" der Firma Friedrich & Lochner

GmbH sowie in den Holzbauprogrammen der Firma mb AEC Software GmbH erstellt werden. Außerdem ermöglichen diese Programme eine weitere Querschnittsoptimierung, indem die Querschnitthöhen individuell außerhalb des gegebenen Rasters gewählt werden können.

ANWENDUNGSBEREICHE

- Aussteifende Dach-, Deckenund Wandschalungen
- Tragende Dach- und Deckenschalungen
- Knotenplatten
- Randbohlen
- Schlanke Dachüberstände

Beispiel: Freispannende hoch tragfähig Dachschalung im Gewerbe- und Hallen-

CHARAKTERISTISCHE RECHENWERTE FÜR STEICOultralam X™ gemäß Z-9.1-811 in N/mm² für Bemessungen nach DIN 1052

Die char. Rohdichte beträgt 480 kg/m³. Die Randbedingungen	Platten- beanspruchung	Scheiben- beanspruchung
gemäß Z-9.1-811 sind zu beachten. Werte für 24 mm ≤ B ≤ 75 mm.	1 He	4
Biegung II zur Faser f _{m,0,k}	38,0	38,0
Biegung \perp zur Faser $f_{m,90,k}$	12,0	_
Zug II zur Faser f _{t,0,k}	24,0	24,0
Zug \perp zur Faser $f_{t,90,k}$	-	5,0
Druck II zur Faser f _{c,0,k}	34,0	34,0
Druck \perp zur Faser $f_{c,90,k}$	4,2	8,0
Schub f _{v,k}	2,7	4,6
Elastizitätsmodul II zur Faser E _{0,mean}	11.000	11.000
Elastizitätsmodul \perp zur Faser E _{90,mean}	3.000	-
Schubmodul G _{mean}	550	550

Weitere Eigenschaften für STEICOultralam X™ Furnierschichtholz:

Emissionsklasse für Formaldehyd:	E 1
Klasse für das Brandverhalten:	D-s1,d0
Bemessungswert der Wärmeleitfähigkeit λ:	0,13 W/(m*K)

PLATTENAUFBAUTEN VON STEICOultralam XTM

Nenndicke t [mm]	Gesamtzahl der Furniere	Anzahl der querver- laufenden Furniere	Aufbausymbol	
19	7	2 oder 3	- - oder - - -	
21	8	2	- - oder - -	
24	9	2	- -	
27	10	2	- -	
33	12	2	- -	
39	14	2	- -	
45	16	4	- - -	
51	17	3	- - -	
57	19	4	- - -	
60	20	4	- - - -	
63	21	5	- - - -	
69	23	5	- - - -	
75	25	5	- - - -	

QUELL- UND SCHWINDVERHALTEN VON STEICOultralam X™

Dichtung	Quell- und Schw Änderungen der H	Reduzierung des Schwindmaßes in %	
Richtung	STEICOultralam X™	Nadelholz	durch STEICOultralam X™
Rechtwinklig zur Faserrichtung der Deckfurniere	0,03	0,24	80%

MAXIMALE DACHÜBERSTÄNDE (KRAGLÄNGEN) IN CM FÜR STEICOultralam X™

Die Faserrichtung der Deckfurniere ist parallel zum Dachrand orientiert

	1											∟ _k
	A	uflast G _k =	0,25 kN/m	1 ²	Δ.	Auflast G _k = 0,60 kN/m ²			Auflast G _k =0,80kN/m ²			
Dicke [mm]	Schneela	Schneelast s _i auf dem Dach in [kN/m²]			Schneela	st s _i auf de	em Dach ir	n [kN/m²]	Schneela	st s _i auf de	em Dach in	[kN/m²]
[]	0,52	0,68	1,0	1,5	0,52	0,68	1,0	1,5	0,52	0,68	1,0	1,5
19	44,0	42,0	38,0	34,0	39,0	37,0	35,0	32,0	37,0	36,0	33,0	31,0
21	49,0	46,0	42,0	37,0	43,0	41,0	38,0	35,0	41,0	39,0	37,0	34,0
24	62,0	58,0	52,0	47,0	54,0	52,0	48,0	44,0	51,0	49,0	46,0	43,0
27	62,5	62,5	59,0	53,0	61,0	58,0	54,0	49,0	58,0	56,0	52,0	48,0
33	62,5	62,5	62,5	62,5	62,5	62,5	62,5	61,0	62,5	62,5	62,5	59,0

MAXIMALE DACHÜBERSTÄNDE (KRAGLÄNGEN) IN CM FÜR STEICOultralam X™

Die Faserrichtung der Deckfurniere ist rechtwinklig zum Dachrand orientiert

												L _k
		uflast G _k =	0,25 kN/m	1 ²	Δ.	Auflast G _k = 0,60 kN/m ²			Auflast G _k = 0,80kN/m ²			
Dicke [mm]	Schneela	st s _i auf d	em Dach ir	[kN/m²]	Schneela	st s _i auf d	em Dach ir	n [kN/m²]	Schneela	st s _i auf de	em Dach in	[kN/m²]
[]	0,52	0,68	1,0	1,5	0,52	0,68	1,0	1,5	0,52	0,68	1,0	1,5
19	73	68	62	55	64	61	57	52	61	59	55	50
21	81	76	69	61	71	68	63	58	67	65	61	56
24	94	88	80	71	83	79	74	67	79	76	71	65
27	106	99	90	80	93	89	83	76	88	85	80	73
33	130	122	110	98	114	109	101	93	108	104	97	90
39	153	144	130	116	135	129	120	109	126	123	115	106
45	177	166	150	134	154	149	138	126	144	142	133	123
51	200	188	170	152	172	169	157	143	161	161	151	139
57	222	210	191	170	190	189	176	160	178	178	169	155
60	232	222	201	179	199	199	185	169	187	187	178	164
63	241	233	211	188	208	208	194	177	195	195	187	172
69	259	255	231	206	225	225	213	194	212	212	204	188
75	277	277	251	224	242	242	231	211	228	228	222	205

Randbedingungen / Anmerkungen

KLED = kurz (Höhe des Gebäudes über NN≤1.000m)

Neigung des Vordaches: $\alpha = 0^{\circ}$

 $L_k \le L_A$

Nachweis im Grenzzustand der Gebrauchstauglichkeit

Dieser Nachweis wird gemäß den Empfehlungen von Absatz 9.2 der DIN 1052:2008 geführt.

Durchbiegungen in der charakteristischen (seltenen) Bemessungssituation:

 $W_{O,inst} \le I/......150$

 w_{fin} - $w_{G,inst} \le 1/.....100$

Durchbiegung in der quasi-ständigen Bemessungssituation:

 w_{fin} - $w_0 \le I/\dots 100$

Das Eigengewicht von den STEICO $ultralam\ X^{TM}$ Platten wurde bereits berücksichtigt und muss somit nicht zusätzlich angesetzt werden. In bestimmten Fällen kann es vorkommen, dass die

oben genannten Grenzwerte als zu großzügig angesehen werden. In diesen Fällen wird empfohlen, spezielle Vereinbarungen mit der Bauherrenschaft im Vorfeld zu treffen.

Nachweis im Grenzzustand der Tragsicherheit

Berücksichtigt sind die Nachweise für einachsige Biegung und für Schub nach DIN 1052:2008. Die Auflagerpressung, Wind-, Punkt- und Mannlasten sowie außerordentliche Lasten sind in den Tabellenwerten nicht mit berücksichtigt. Die Tabellenwerte gelten nur für linienförmig gelagerte Platten.

Die Tabelle und deren Inhalt ersetzten keinesfalls den statischen Nachweis.

Ausführungsempfehlung

Da Vordachkonstruktionen über die Nacht hinweg überdurchschnittlich stark abkühlen, empfiehlt STEICO eine oberseitige Überdämmung der STEICO*ultralam X*™ Platten. Dies kann zum Beispiel mit der bekannten STEICOuniversal geschehen.

ZERTIFIZIERUNG

STEICOultralam R™ und STEICOultralam X™ werden gemäß der harmonisierten europäischen Produktnorm DIN EN 14374 produziert und überwacht und sind CE zertifiziert sowie bauaufsichtlich zugelassen nach Z-9.1-811. FSC-zertifizierte Ware auf Anfrage erhältlich.

LAGERUNG/TRANSPORT

STEICO*ultralam™* Furnierschichtholz ist eben und trocken zu lagern. STEICO*ultralam™* sollte während des Transports vor Verschmutzungen und Feuchte geschützt werden.

Hohe Tragfähigkeit, große Spannweiten

Sehr geringe Toleranzen

Hohe Dimensionsstabilität

Leicht zu verarbeiten

Angepasst an STEICO Stegträger

LIEFERFORMEN FÜR STEICOultralam R™

Länge [mm]	Dicke [mm]	Breite [mm]	Stück/Paket	Gewicht/Pak. [kg]
		200	30	ca. 1.690
		220	30	ca. 1.690
12.000	39	240	25	ca. 1.690
12.000	39	300	20	ca. 1.690
		360	15	ca. 1.690
		400	15	ca. 1.690
		200	30	ca. 1.950
		220	30	ca. 2.140
12.000	45	240	25	ca. 1.950
12.000	45	300	20	ca. 1.950
		360	15	ca. 1.750
		400	15	ca. 1.950
		200	18	ca. 1.950
		220	15	ca. 1.790
12.000	75	240	15	ca. 1.950
12.000	/5	300	12	ca. 1.950
		360	12	ca. 2.340
		400	9	ca. 1.950
		200	18	ca. 2.340
		220	15	ca. 2.140
12.000	90*	240	15	ca. 2.340
12.000	90*	300	12	ca. 2.340
		360	9	ca. 2.100
		400	9	ca. 2.340

^{*} nicht in deutscher bauaufsichtlicher Zulassung (ABZ) enthalten

LIEFERFORMEN FÜR STEICOultralam XTM

Dicke [mm]	Breite [mm]	Stück/Paket	Plattenlängen [m]
21*	1.250	12	6,0-12,0
24*	1.250	10	6,0-12,0
27	1.250	9	6,0-12,0
33	1.250	7	6,0-12,0
39	1.250	6	6,0-12,0
45	1.250	5	6,0-12,0
51	1.250	4	6,0-12,0
57	1.250	4	6,0-12,0
63	1.250	4	6,0-12,0
69	1.250	4	6,0 - 12,0
75	1.250	3	6,0 - 12,0

^{*} nur auf Anfrage

Sonderformate, spezielle Qualitäten und Lieferungen besonderer Verpackungseinheiten auf Anfrage möglich (maximal 106 mm Dicke, 1,25 m Breite und 20,5 m Länge).

Ihr STEICO Fachhändler

AKASTAV s. r. o.

Hladnovská 1247/11, 710 00 Ostrava mob: 733 123 464, tel: 596 247 543 obchod@akastav.cz, www.akastav.cz